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Deposition and entrainment of particles in turbulent flows are crucial in a number of technological appli-
cations and environmental processes. We present a review of recent results from our previous works,
which led to physical insights on these phenomena. These results were obtained from a systematic
numerical study based on the accurate resolution – Direct Numerical Simulation via a pseudo-spectral
approach – of the turbulent flow field, and on Lagrangian tracking of particles under different modelling
assumptions. We underline the multiscale aspect of wall turbulence, which has challenged scientists to
devise simple theoretical models adequate to fit experimental data, and we show that a sound rendering
of wall turbulence mechanisms is required to produce a physical understanding of particle deposition
and re-entrainment. This physical understanding can be implemented in more applied simulation tech-
niques, such as Large-Eddy Simulation. Our arguments are based also on the phenomenology of coherent
structures and on the examination of flow topology in connection with particle preferential distribution.
Starting from these concepts, reasons why theoretical predictions may fail are examined together with
the requirements which must be fulfilled by suitable predictive models.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the context of turbulent dispersed flows (gas–solid, gas–li-
quid and liquid–solid), a key information for practical applications
is the rate at which the dispersed phase (e.g. particles, droplets and
aerosols; from now on referred to as particles for sake of simplic-
ity) is transported to, deposited at, and re-entrained from a solid
boundary by turbulence. In relation to the many and complex phe-
nomena involved, an elemental physical insight was given by
Friedlander and Johnstone (1957) in their early paper: the ‘‘rate
of particle transfer is always less than or equal to the transfer rate
of the common gases which follow approximately the Reynolds anal-
ogy”. This remark provides the essentials for a model: first it is nec-
essary to understand wall turbulence, second it is necessary to
understand the coherent flow motions (instantaneous realizations
of the Reynolds stresses), and third it is necessary to model the
intrinsic inadequacy of the adverb approximately both in qualita-
tive terms – phenomena – and quantitative terms – models. A
number of later studies had emerged to investigate on the same
problem, but it is beyond the scope of this paper to make a com-
plete literature review; rather we just cite a few experimental
studies (among others: Kaftori et al., 1995a,b; Niño and Garcia,
1996) and theoretical developments (from Caporaloni et al.,
1975; Cleaver and Yates, 1975; to Cerbelli et al., 2001; Slater
ll rights reserved.
et al., 2003). Upon examination of most of the published works,
it emerges that the main difficulty of the modelling approaches
is associated with the inability of particles to follow turbulent vor-
tices: due to inertia, they cross through vortices and accumulate
into specific flow regions where they tend to stay long time. For
this reason, particles do not experience fully the Eulerian statistics
of the turbulent flow field; rather they sample it only preferentially
(see Fessler et al., 1994; and references therein). The response to a
lack of satisfactory theories produced an effort to collect experi-
mental data sources for model benchmarking: examples, mostly
referring to fully-developed turbulent flow in straight vertical
tubes or ducts, can be retrieved in the paper by Young and Leeming
(1997) or, more recently, in the report by Sippola and Nazaroff
(2002). An interesting feature of these data collections is the inac-
curacy affecting measurements in the so-called ‘‘diffusion–impac-
tion” regime. In this regime, particles are large enough for their
inertia to be influential on their motion and small enough to be-
come rather quickly independent of the strong motions character-
izing the regions away from the walls. In fact, the inertia of these
particles is just but sufficient to influence their motion in the wall
region.

In our previous papers (Marchioli and Soldati, 2002; Marchioli
et al., 2003, 2006; Picciotto et al., 2005) it was shown that there
is a strong correlation between coherent wall structures, local par-
ticle segregation and subsequent deposition phenomena, which
have been subdivided into several steps, all quantified from a
statistical viewpoint. Specifically, it was demonstrated that, in
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the diffusion–impaction regime, particles deposition process is ini-
tially dominated by inertia-induced segregation and accumulation
into specific flow regions close to the walls. Only afterwards parti-
cles are driven to the walls. Modelling this physical mechanism is
non-trivial, especially with numerical methods coarser than DNS.
The complicacy lies in the complex interaction between particle
inertia and the non-homogeneous structure of turbulence in the
wall-normal direction and justifies the lack of physically-based
accurate correlations for particle deposition flux (Oliemans et al.,
1986; Soldati and Andreussi, 1996).

In this paper, we will review the most relevant findings ob-
tained at our computational laboratory through systematic investi-
gation of particles–turbulence interaction in boundary layer by
means of Eulerian–Lagrangian numerical simulations. Specifically,
we will refer to Direct Numerical Simulations (DNS) and comple-
mentary Large-Eddy Simulations (LES) of fully-developed gas–solid
channel flow under the pointwise particle approximation. Also, we
will focus on particles which possess inertia, emphasizing results
more than techniques. Despite the limitations to the modelling
capabilities introduced by the point-particle approximation, this
approach can still provide the proper level of description to extract
physical knowledge from a complex two-phase system. According
to our experience, this approach is fully representative of the main
qualitative features characterizing particles–turbulence interaction
in boundary layer in the limit of small particles and dilute flow
conditions.

The paper is organized as follows. First, we will describe the
numerical methodology (Section 2). Then, we will overview the
mechanisms by which particles are deposited at the wall, trapped
inside the boundary layer and entrained into the outer flow region
(Section 3). Finally we will review the statistical tools that can be
used to quantify and characterize these phenomena, also identify-
ing current limitations of LES and possible lines of development
(Section 4).
2. Physical modelling and numerical methodology

The reference geometry consists of two infinite flat parallel
walls: the origin of the coordinate system is located at the center
of the channel and the x; y and z axes represent streamwise, span-
wise and wall-normal directions, respectively (see Fig. 1). Periodic
boundary conditions are imposed on the fluid velocity field in the
homogeneous directions (x and y), no-slip boundary conditions are
imposed at the walls (z ¼ �h and z ¼ h in Fig. 1). The size of the
computational domain is Lx � Ly � Lz ¼ 4ph� 2ph� 2h. We con-
sider non-reactive, isothermal and incompressible (low Mach
number) flow and monodispersed micrometer-size particles. Cal-
culations are done using variables in dimensionless, represented
by the superscript + and expressed in wall units, but to focus on
application we consider air with density q ¼ 1:3 kg m�3 and kine-
matic viscosity m ¼ 15:7� 10�6 m2 s�1, and pointwise heavy parti-
cles with density qp ¼ 103 kg m�3 and diameters ranging from 10
to 100lm (see Tables 1 and 2).

2.1. Equations for the fluid phase and flow solver

For the DNS, the governing balance equations for the fluid in
dimensionless form read as (Soldati and Banerjee, 1998; Soldati,
2000):
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where ui is the ith component of the velocity vector, p is the fluctu-
ating kinematic pressure, d1;i is the mean pressure gradient that
drives the flow and Res � ush=m is the Reynolds number based on
the shear (or friction) velocity, us, and on the half channel height,
h. The shear velocity is us �

ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
, where sw is the mean shear

stress at the wall. The superscript + is dropped from Eqs. (1) and
(2) for ease of reading.

For the LES, the governing balance equations are smoothed with
a filter function of width D. Accordingly, all flow variables are
decomposed into a resolved (large-scale) part and a residual (sub-
grid scale) part as uðx; tÞ ¼ �uðx; tÞ þ duðx; tÞ. The filtered equations
for the resolved scales are then:
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where sij ¼ uiuj � �ui�uj represents the subgrid scale (SGS) stress ten-
sor. The large-eddy dynamics is closed once a model for sij is pro-
vided. In our studies, the dynamic SGS model of Germano et al.
(1991) was adopted.

The flow solver used to perform the numerical simulations is
based on a pseudo-spectral method that transforms the field vari-
ables into wave space to discretize the governing equations. In the
homogeneous directions (x and y), all the quantities are expressed
by Fourier expansions using kx and ky wavenumbers. In the wall-
normal non-homogeneous direction, they are represented by
Chebyshev polynomials. The solution, represented spectrally in
all three flow directions, has the general form:

uðkx; ky;nÞ ¼
X

kx

X
kx

X
n

ûðkx; ky;nÞeiðkxxþkyyÞTnðzÞ; ð5Þ

in which TnðzÞ � cos½n � cos�1ðz=hÞ� is the nth order Chebyshev poly-
nomial. By using the orthogonality property of eiðkxxþkyyÞ, the equa-
tions for the Fourier coefficients ûðkx; ky;nÞ can be obtained. All
the differential equations to be solved are of Helmholtz type with
Dirichlet boundary conditions specified at the walls. Equations are
time advanced using a two-level explicit Adams–Bashforth scheme
for the non-linear convection terms and an implicit Crank–Nicolson
method for the diffusion terms. All calculations are carried out in
wave space except for the non-linear terms, which are computed
in the physical space and then transformed back to wave space. This
numerical scheme is standard for direct simulation of turbulence in
domains of simple geometry, such as rectangular channels (Soldati
and Banerjee, 1998; Soldati, 2000).

2.2. Equations for the dispersed phase and Lagrangian particle tracking

In the Lagrangian framework, the motion of particles is de-
scribed by a set of ordinary differential equations for particle po-
sition, xp, and velocity, up. These equations in vector form read
as:

dxp

dt
¼ up; ð6Þ

dup

dt
¼ ðu@p � upÞ

sp
ð1þ 0:15Re0:687

p Þ; ð7Þ

where u@p is the fluid velocity at the particle position, and
sp � qpd2

p=18l is the particle relaxation time (dp and l being the
diameter of the particle and the dynamic viscosity of the fluid,
respectively). The Stokes drag coefficient is computed using a stan-
dard non-linear correction required when the particle Reynolds
number, Rep ¼ ju@p � upjdp=m, does not remain small (i.e. suffi-
ciently large inertia).



Table 1
Particle parameters for the Rel

s direct numerical simulations.

Stl ¼ StjRel
s

sl
p ðsÞ dþp dp ðlmÞ Vþs ¼ gþ � St Reþp ¼ Vþs � d

þ
p =mþ

0.2 0:227� 10�3 0.068 9.1 0.0188 0.00128
1 1:133� 10�3 0.153 20.4 0.0943 0.01443
5 5:660� 10�3 0.342 45.6 0.4717 0.16132
25 28:32� 10�3 0.765 102.0 2.3584 1.80418
125 1:415� 10�1 1.71 228 11.792 20.1643

Table 2
Particle parameters for the Reh

s direct numerical simulations.

Sth ¼ StjReh
s

sh
p ðsÞ dþp dp ðlmÞ Vþs ¼ gþ � St Reþp ¼ Vþs � d

þ
p =mþ

1 0:283� 10�3 0.153 10.2 0.0118 0.00275
4 1:132� 10�3 0.306 20.4 0.0472 0.01444
5 1:415� 10�3 0.342 22.8 0.0590 0.02018
20 5:660� 10�3 0.684 45.6 0.2358 0.16129
25 7:075� 10�3 0.765 51.0 0.2948 0.22552
100 28:30� 10�3 1.530 102.0 1.1792 1.80418

L y

L x

z,w

x,uy,v

O

z=−h

z=h
vortex

regionLow−speed
streak

Clockwise
vortex

No−slip Walls

Counter−clockwise

High−speed

In−sweep
Ejection

In−sweep

Fig. 1. Particle-laden turbulent gas flow in a channel: sketch of the computational domain and minimal schematics of near-wall turbulent coherent structures. Strong causal
relationship links low-speed streaks to ejections generated by quasi-streamwise vortices, which also generate in-sweeps of high streamwise momentum fluid to the wall in
the high velocity regions.
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To calculate individual particle trajectories, a Lagrangian track-
ing routine is coupled to the DNS/LES flow solver. The routine
solves for Eqs. (7) and (6) under the following assumptions: (i) par-
ticles are pointwise, non-rotating rigid spheres (point-particle ap-
proach); (ii) particles are injected into the flow at concentration
low enough to consider dilute system conditions: the effect of par-
ticles onto the turbulent field is neglected (one-way coupling ap-
proach) as well as inter-particle collisions. The equations of
particle motion are time advanced by a 4th-order Runge–Kutta
scheme: at the beginning, particles are randomly distributed over
the computational domain and their initial velocity is set equal
to that of the fluid at the particle initial position. In our study, fluid
velocity interpolation is performed using 6th-order Lagrangian
polynomials (near the wall, the interpolation scheme switches to
one-sided). The timestep for particle tracking was chosen equal
to that of the fluid, dtþ ¼ 0:045, more than four times smaller than
the non-dimensional response time of the smallest particle tracked
ðStl ¼ 0:2Þ and fully adequate to represent precisely particle
dynamics (Marchioli et al., 2008c). Periodic boundary conditions
are imposed on particles moving outside the computational do-
main in the homogeneous directions. Eq. (7) does not include
near-wall hydrodynamic effects which may complicate the actual
mechanism of deposition when the particle-to-wall distance be-
comes small compared to particle size: perfectly-elastic collisions
at the smooth walls are assumed when the particle center is at a
distance lower than one particle radius from the wall (Marchioli
and Soldati, 2002).

For the purposes of performing a phenomenological study of
turbulent particle dispersion and investigating the fundamental
physics of the deposition and entrainment phenomena, a base
simulation was undertaken in which the setting is kept as sim-
plified as possible and the number of degrees of freedom is min-
imized. Subsequent inclusion of additional forces (gravity and lift
in our problem) can be added to single out their specific effect
on particles and to analyze possible changes to the physical sce-
nario depicted by the base simulation. However, several previous
works (Marchioli and Soldati, 2002; Arcen et al., 2006; Marchioli
et al., 2007) have demonstrated that, within the range of param-
eters examined – particle dimension (see Tables 1 and 2 for de-
tails), density, and concentration – the effect of these forces just
adds quantitative corrections (Marchioli and Soldati, 2002; Arcen
et al., 2006; Marchioli et al., 2007). In the limit of the dilute flow
assumption, the two-way coupling – particles feedback onto the
flow field – will also add just quantitative corrections and the
weak modulation of the flow (Kaftori et al., 1995a,b; Pan and
Banerjee, 1996) will not modify substantially the quality of the
model (Soldati, 2005).

2.3. Database and repositories

The results presented in this paper are relative to two values of
the Reynolds number: Res ¼ 150 (Rel

s hereinafter) corresponding to
a shear velocity ul

s ¼ 0:11775 ms�1, and Res ¼ 300 (Reh
s hereinafter)

corresponding to a shear velocity uh
s ¼ 0:2355 ms�1. Average (bulk)

Reynolds numbers are thus Rel
b � ul

bh=m ¼ 2100, where ul
b ’

1:65 ms�1 is the average (bulk) velocity; and Reh
b � uh

bh=m ¼ 4200,
where uh

b ’ 3:3 ms�1, respectively. The size of the computational
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domain in wall units is Lþx � Lþy � Lþz ¼ 1885� 942� 300 for the Rel
s

simulations and Lþx � Lþy � Lþz ¼ 3770� 1885� 600 for the Reh
s sim-

ulations. In DNS, the computational domain was discretized in
physical space with 128� 128� 129 grid points (128� 128 Fou-
rier modes and 129 Chebyshev coefficients in the wave space) for
the Rel

s simulations and with 256� 256� 257 grid points
(256� 256 Fourier modes and 257 Chebyshev coefficients in the
wave space) for the Reh

s simulations to maintain the grid spacing
fixed. In LES, two computational grids were considered: a coarse
grid made of 32� 32� 65 nodes and a fine grid made of
64� 64� 65 nodes. Only the lower value, Rel

s, of the shear Rey-
nolds number was considered.

For the DNS, the number of grid points in each direction was
chosen to ensure that the grid spacing is always smaller than the
smallest flow scale1 and the requirements imposed by the point-
particle approach are satisfied. Assuming that particle motions due
to strain are negligible, these requirements deal primarily with the
size of the particle, which must be much smaller than the grid cell
to justify the approximation that the velocity u@p used in Eq. (7) is
the (undisturbed) fluid velocity at the center of the particle. This
velocity is obtained by interpolation and an accurate estimate re-
quires a grid cell significantly larger than the particle. The accuracy
of the fluid flow simulation, however, also requires a grid cell signif-
icantly smaller than the fluid scales to solve: if the particles are
much smaller than the smallest relevant flow scale, than the
point-particle restriction is satisfied. In the case of DNS, this means
that particles must be much smaller than the Kolmogorov length
scale ðdp << gKÞ. In one-way coupling simulations, violation of the
above restrictions on particle size may introduce significant errors.
For heavy particles in gas flows ðqp=q� 1Þ, however, the time scale
of the particles is significantly larger than the smallest fluid time
scale: due to their inertia, the particles act as low-pass filters and
are driven mostly by the large scales. The error introduced by a small
grid cell is not important and may be neglected, the only conse-
quence being that the particles experience a local flow field with
smaller scales than the ones that are actually forcing the particles
(Portela and Oliemans, 2003).

Samples of np ¼ 105 particles characterized by different re-
sponse times were considered for each value of the shear Reynolds
number. The response time is made dimensionless using wall vari-
ables, and the Stokes number is thus obtained as St � sþp ¼ sp=sf

where sf � m=u2
s is the viscous timescale of the flow. This charac-

teristic time scale supplies a measure of the time available for
eddy–particle interaction. Tables 1 and 2 summarize the complete
set of parameters relevant to the simulations of particle dispersion,
including the non-dimensional values of the stationary average
settling velocity of the particles, Vþs , and the corresponding values
of the particle Reynolds number, Rep. We remark that the charac-
teristic timescale of the flow changes depending on the specific va-
lue of the shear Reynolds number, namely on the specific value of
the shear velocity. In the present case, we have sl

f ¼ m=ðul
sÞ

2 ¼
1:13� 10�3 s for the Rel

s simulations and sh
f ¼ m=ðuh

sÞ
2 ¼

2:83� 10�4 s for the Reh
s simulations. For the present channel flow

configuration at Rel
s, the non-dimensional value of the Kolmogorov

timescale, sþK , ranges from 2 wall units at the wall to 13 wall units
at the channel centerline (Marchioli et al., 2006). Hence, if we rescale
the particle response times given in Table 1 using the local value ofsþK
near the centerline, where the flow conditions are closer to homoge-
neous and isotropic, we obtain Stokes numbers that vary from 10�2

to 10. In this paper, we will present results encompassing a total
1 In the present flow configuration at Rel
s , the non-dimensional Kolmogorov length

scale, gþK , varies along the wall-normal direction from a minimum value gþK ¼ 1:6 at
the wall to a maximum value gþK ¼ 3:6 at the centerline. The grid resolution in the
wall-normal direction is such that the first collocation point is at zþ ¼ 0:05 from the
wall, while in the center of the channel Dzþ ¼ 3:7 (Marchioli et al., 2006).
number of 17 cases (11 in DNS fields, 6 in LES fields), which represent
a complete and homogeneous source of data covering a large target
parameter space. A repository of both post-processed and raw data
for the Stl particles was gathered in the frame of an international col-
laboration (see Marchioli et al., 2008c) and is available online at
http://cfd.cineca.it. This base repository (including drag and inertia
only) is complemented by other repositories including also the ef-
fects of gravity and lift in the same channel flow (see Marchioli
et al., 2007).

3. Discussion

3.1. Phenomenology of particle deposition, entrainment and trapping
phenomena

Particle transfer processes are dominated by the dynamics of
turbulent structures in the proximity of the wall. As anticipated,
we will review here some of the most relevant phenomena charac-
terizing particle dynamics in the turbulent boundary layer. To ex-
plore the fundamental underlying physics, we will resort to
concepts, ideas and models derived from direct numerical simula-
tions of pointwise particle dispersion subject to inertia and drag in
turbulent channel flow. We refer the reader to previous works
(Brooke et al., 1992; Jimenez and Pinelli, 1999; Adrian et al.,
2000; Marchioli and Soldati, 2002; Schoppa and Hussain, 2002;
Soldati, 2005; Adrian, 2007) for details and in-depth explanations.

A pictorial view of particle transport mechanisms is provided in
Fig. 2, where one instantaneous snapshot of particle distribution
and turbulent coherent structures in the near-wall region of the
channel is shown. Here, we focus on a cross-sectional window
(y� z plane) of the computational domain having thickness equal
to one streamwise cell. Fig. 2(a) shows the flow field in a region of
strong particle accumulation between two subsequent QSV. Vectors
represent the fluid velocity in the plane and color isocontours map
the values of the streamwise velocity component. A strongly coher-
ent ejection of low-momentum fluid is apparent in the middle of the
figure, where one low-speed streak is lifted and flanked by two coun-
ter-rotating QSV. In-sweeps of high-momentum fluid are also visible
on the downwash side of the QSV. Particle position is identified with
the circles – larger than the real scale for ease of visualization. Blue
particles have wall-normal velocity directed away from the wall
whereas purple particles have wall-normal velocity directed toward
the wall. In Fig. 2(b) we show the same flow field but this time we fo-
cus on the flow structures, identified using streamwise vorticity iso-
surfaces. The green isosurface identifies the counter-clockwise
rotating QSV, whereas the pale blue isosurface identifies the clock-
wise rotating QSV. Particle color code is the same as in Fig. 2(a).

The structures depicted in Fig. 2 control the deposition process:
(i) they accumulate particles in a region not far from the wall; (ii)
they produce the sweeps which bring particles to the wall; (iii)
they may trap particles in the wall region or (iv) they may entrain
particles again in the outer flow. It was shown previously that par-
ticles are either re-entrained immediately by the same vortex
which brought them to the wall or confined for very long times
in the viscous region (Narayanan et al., 2003). As a consequence,
particle transfer fluxes toward the wall have higher intensity than
particle transfer fluxes away from the wall. In turn, unbalanced
fluxes lead to non-uniform (preferential) distribution of particles
within the flow and produce near-wall particle accumulation
(Reeks, 1983; Marchioli and Soldati, 2002).

3.2. Statistical description of particle trapping and resuspension
mechanisms

As for particle deposition, the proper timing between particles
and coherent structures is of fundamental importance for resus-

http://cfd.cineca.it


Fig. 2. Cross-section of the flow field and front view of particles in the region of particle accumulation (a) and front view of particles and structures in the region of particle
accumulation (b).
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pension, since particles can only leave the wall layer through fluid
ejections. Particles driven to the wall by a sweep and not re-en-
trained to the outer flow by an ejection are bound to remain in
the viscous wall layer for long times, slowly diffusing to the wall
due to turbophoresis (Reeks, 1983; Narayanan et al., 2003). Clearly,
the mechanism of particle re-entrainment from the viscous sublay-
er is influenced by inertia. QSV control particle resuspension via
the ejections they generate. However, one can intuitively argue
that larger particles will require larger momentum than smaller
particles. To characterize the influence of inertia on particle resus-
pension it is thus important to establish a quantitative link be-
tween the inertia of the re-entrained particle and the strength,
e.g. size and turnover time, of the structure responsible for re-
entrainment. This type of analysis is also useful to understand ex-
actly where resuspended particles come from, namely to under-
stand whether particles have been just swept to the wall layer or
have been sitting there for a long time.

Fig. 3(a) shows the probability density function (PDF) of the
non-dimensional particle residence time, tþres, in the viscous sublay-
er – threshold fixed at zþ ¼ 5. Profiles for all the particle sets of
Table 1 are shown. To compute tþres a time counter is started for
each particle entering the viscous sublayer, the time counter is
then stopped when the particle exits the viscous sublayer. A short
residence time indicates that a particle penetrating the viscous
sublayer may exit by being transported on the same vortical struc-
ture which brought it inside in the first place. All curves in Fig. 3(a)
follow a similar trend for tþres > 40, so our analysis is focused on
shorter residence times. Each curve has a rather well defined peak:
the PDF reaches its maximum value at tþres ’ 7 for the Stl ¼ 0:2 and
Stl ¼ 1 particles; between 7 and 13 for the Stl ¼ 5 particles; and
about tþres ’ 20 for the larger Stl ¼ 25 and St ¼ 125l particles. It is
 0
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Fig. 3. PDF of the particle residence time, tþres , in the viscous sublayer (a); and local
interesting to compare these peak values with the characteristic
timescale of the turbulent structures in the near-wall region. This
timescale, given here in terms of local dimensionless eddy turn-
over time, tþeddy � 1=xþx (where xþx is the streamwise fluid vortici-
ty), is shown in Fig. 3(b) as a function of the wall distance, zþ.
Considering that tþeddy scales linearly with zþ within the viscous
sublayer and decreases progressively as the structures lie closer
to the wall, we first observe that large particles may exit the vis-
cous sublayer quickly only if re-entrained by large structures. Sec-
ond, re-entrainment mechanisms for small particles are
dominated by those structures with turnover time tþeddy ’ 7 in wall
units.

The transport mechanisms described so far are summarized in
the schematics of Fig. 4. First, particles segregate and form coher-
ent clusters in regions of the buffer layer where in-sweeps can en-
train them: segregation into clusters is thus the first mechanism
characterizing the deposition process. Particles entrained in a
sweep experience a net drift toward the near-wall accumulation
region, where particle concentration reaches its maximum. In the
physical situation under investigation, the main mechanism capa-
ble of inducing such drift is turbophoresis (Narayanan et al., 2003;
Marchioli et al., 2003). Once in the accumulation region, which is
located well into the viscous sublayer, particles may either deposit
at the wall or be re-entrained toward the outer flow by ejections.
Two main deposition mechanisms can be identified (Portela
et al., 2002; Narayanan et al., 2003): particles that have acquired
enough momentum may coast through the accumulation region
and deposit by impaction directly at the wall; otherwise, after a
long residence time, particles can deposit under the action of tur-
bulent fluctuations which are strictly zero only at the wall and,
due to turbulence non-homogeneity, are always stronger in driving
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particles to the wall. The relative importance of these two mecha-
nisms depends on particle inertia.

3.3. Statistical description of particle preferential distribution,
segregation and deposition

As discussed in the previous sections, particle deposition can be
regarded as the outcome of a multi-step process: segrega-
tion! accumulation! deposition. In the following a number of
statistical tools that can be used to characterize from a statistical
viewpoint all these steps will be surveyed. Our analysis will restrict
to the physical situation in which, while velocity statistics for both
phases are at stationary state, particle distribution is still develop-
ing and much longer simulation times would be required to obtain
steady-state concentration profiles (Marchioli et al., 2008c). The
rationale for this choice is that, in a number of industrial applica-
tions including separation (Soldati and Banerjee, 1998; Soldati,
2000) and droplet-laden flows (Soldati and Andreussi, 1996), par-
ticle distribution never reaches equilibrium. From an engineering
viewpoint, statistically-developing particle concentration is thus
the most probable (and the most interesting) situation to
investigate.

3.3.1. Quantification of particle preferential distribution in the viscous
sublayer

In recent years, several studies (e.g. Picciotto et al., 2005; Rou-
son and Eaton, 2001; and references therein) were conducted to
correlate particle distribution in the viscous sublayer with coher-
ent structures based on global statistical identifiers. A methodol-
ogy was thus developed to correlate non-homogeneous particle
accumulation to coherent flow structures, according to their topo-
logical properties. A general flow topology classification was pro-
posed (see Blackburn et al. (1996) for details) to group all
elementary three-dimensional flow patterns with respect to the
three invariants, P; Q and R, of the velocity gradient tensor, ui;j.
For incompressible flow fields:

P � ui;i ¼ 0; ð8Þ

Q � 1
2
ðui;iÞ2 � ui;juj;i

h i
¼ 1

2
ðXijXij � SijSijÞ; ð9Þ

R � �k1k2k3; ð10Þ
and D ¼ ð27=4ÞR2 þ Q3 is the discriminant that determines the
eigenvalues k1; k2 and k3 of ui;j. The quantities Xij � 1

2 ðui;j � uj;iÞ
and Sij � 1

2 ðui;j þ uj;iÞ are the antisymmetric and symmetric compo-
nents of the velocity gradient, respectively. Four regions can be
identified across the curves D ¼ 0 and R ¼ 0: two vortical flow re-
gions, the so-called stable focus/stretching ðIÞ and unstable focus/
compressing critical nodes ðIIÞ, and two convergence regions, the
so-called stable node/saddle/saddle ðIIIÞ and unstable node/saddle/
saddle critical nodes ðIVÞ. Further critical points can be identified
along the Q-axis and the D ¼ 0 line. The reader is referred to the pa-
pers by Cantwell and co-workers for a complete treatment (see Cha-
cin and Cantwell (2000) or Blackburn et al. (1996), for instance).

The structural classification scheme employed by Blackburn
et al. (1996) eliminates the arbitrary choice of threshold values re-
quired by other schemes and, therefore, it can be conveniently
used to elucidate the relationship between particle distribution
and near-wall vortices. In their DNS study, Rouson and Eaton
(2001) focused their attention on moderate- to high-Stokes num-
ber particles (St ¼ 8:6, 117, and 810) throughout the entire chan-
nel. This range includes particles too big to match the ever-
decreasing turbulent flow scales which particles encounter when
approaching the wall. In a subsequent DNS study (Picciotto et al.,
2005), we tried to complement the analysis of Rouson and Eaton
(2001) by considering low- to moderate-Stokes number particles,
which are more ‘‘respondent” to the near-wall flow timescales.
Since we are interested in providing a statistical description of par-
ticle preferential distribution very near the wall, in Fig. 5 we show
the joint probability density function (JPDF) of Q and R in the vis-
cous sublayer only. JPDFs were calculated over 400 realizations
of the flow field (covering 1800 dimensionless time units) to con-
sider only those events with significant statistical occurrence.

The JPDF sampled for the fluid at grid points (Fig. 5(a)) shows
that the most probable value of Q and R is zero for all the instants,
and that the preferred quadrants correspond to the stable focus/
stretching ðIIÞ and the unstable node/saddle/saddle ðIVÞ topologies.
Also, the lines of constant JPDF asymptote toward the D ¼ 0 curve,
which represents the tail of the tear-drop shaped ðQ ;RÞ-distribu-
tion. As expected, the JPDF sampled at the position of the smaller
particles (Stl ¼ 0:2 in Fig. 5(b) and Stl ¼ 1 in Fig. 5(c)) is similar
to that of the fluid and shows weak preferential distribution. The
degree of particle preferential sampling increases monotonically
up to the intermediate-size particles: the area covered in the
ðQ ;RÞ-plane by the JPDFs becomes smaller (see Fig. 5(d) and (e)),
indicating that these particles avoid the strongest vortical regions
in quadrants I and II as well as the strongest vortex-stretching re-
gions (quadrant IV) along the positive-R, zero-D curve. Only con-
vergence regions ðIIIÞ are characterized by particle preferential
sampling. A broader JPDF is obtained again for the Stl ¼ 125 parti-
cles, as shown in Fig. 5(f). This demonstrates the effect of the
Stokes number on particle preferential sampling. Results from per-
cent particle counts for each topological quadrant and for each par-
ticle set (reported in Picciotto et al., 2005) corroborate the
conclusion that a larger proportion (more than 70%) of particles
tends to occupy convergence regions in the viscous sublayer, while
the strongest vortical regions are depleted of particles due to the
centrifuge-like effect of the eddies in the near-wall region (Rouson
and Eaton, 2001).

Particles may remain long time or short time in the accumula-
tion regions (Narayanan et al., 2003). Yet, the analysis in the ðQ ;RÞ-
space may not discriminate between long- and short-term accu-
mulation in convergence regions. A different identification crite-
rion specifically valid in the wall proximity is thus required. One
possibility is to exploit the relationship between the fluctuating
components of the wall shear stress, s0ij, and the fluctuating compo-
nents of the velocity gradient tensor evaluated at the wall, u0i;jjw.
Limiting the analysis to incompressible flow, the only non-vanish-
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ing components of this tensor at the wall are u0x;zjw ¼ @u0=@zjw and
u0y;zjw ¼ @v 0=@zjw. Now, the low-speed streaks are ejection-like
environments that correlate with lower-than-mean wall shear
stress regions ðs0xzjw � l � @u0=@zjw < 0Þ, whereas the high-speed
streaks are associated with higher-than-mean wall shear stress re-
gions ðs0xzjw > 0Þ. More specifically, two distinct near-wall flow re-
gions can be identified with respect to the wall-normal direction: a
sweep-like inflow region, characterized by s0yzjw � l � @v 0=@zjw ¼ 0
associated to s0xzjw > 0, and an ejection-like outflow region, charac-
terized by s0yzjw ¼ 0 associated to s0xzjw < 0.

Fig. 6 shows the instantaneous joint correlations of non-vanish-
ing components of u0i;jjw. Correlations were computed for both the
fluid and the particles following the same procedure as in Picciotto
et al. (2005). Visual inspection indicates that, regardless of particle
size, particles in the viscous sublayer accumulate preferentially in
the negative @u0=@zjw semiplane, which corresponds to ejection-
like low-speed regions near the wall. This is also confirmed by
the percentage of sample points falling in each @u0=@zjw semiplane
(percent figures are included in Fig. 6). Note that even the fluid
(Fig. 6(a)) shows preferential distribution: a clear consequence of
the mechanism by which fluid velocity streaks are generated. A
jet of fluid directed to the wall generates the sweep and also the
high-speed region; then the jet of fluid, by continuity, is deflected
by the wall and generates the ejection. Due to the entrainment of
surrounding fluid, the sweep is more intense and concentrated
while the ejection spreads over a wider cross-section and has low-
er momentum. Low-speed, low-shear regions, where s0w < 0 (i.e.
@u0=@zþjw < 0Þ, appear much wider than high-speed, high-shear re-
gions, where s0w > 0 (i.e. @u0=@zþjw > 0Þ. Thus, grid points necessar-
ily sample @u0=@zþjw < 0 regions more often. The correlations
shown in Fig. 6 are similar for all the flow field realizations we
studied (the same that were used to obtain Fig. 5). Percent data
for samples falling in each @v 0=@zjw semiplane (not shown) also
indicate that the preferred near-wall flow regions correlate well
with values of @v 0=@zjw close to zero, thus leading to the conclusion
that particle concentration build-up occurs preferentially in the
proximity of a near-wall outflow region (Picciotto et al., 2005).

The physics described in Fig. 6 can be examined also in Fig. 7.
This figure shows the instantaneous distribution of the Stl ¼ 25
particles, chosen for their relatively larger tendency to preferential
sampling (see discussion of Fig. 5), together with the contours of
s0xzjw in the ðx; yÞ-plane. The behavior of @u0=@zþjw along the span-
wise direction at a fixed streamwise location (identified with the
dash-dotted AA-line) is also shown on top of Fig. 7. Dark gray
spheres represent particles with positive spanwise velocity
ðv > 0Þ, moving from left to right; light gray spheres represent par-
ticles with negative spanwise velocity ðv < 0Þ, moving from right
to left. Dark gray contours indicate high positive values of s0xzjw,
white contours indicate low negative values. Black solid lines con-
nect points where s0yzjw is equal to zero. From Fig. 7, it is apparent
that particles arriving at the wall are initially found in high-speed,
high-shear regions (white contours), which are convergence flow
regions where @u0=@zjw attains a local maximum. Particles stay
briefly in the high-speed regions: they are swept away from these
regions and clusters begin to split along the @v 0=@zjw ¼ 0 lines,
which thus mark the position of Short-Term Accumulation ðSTAÞ
regions. Particles move in the spanwise direction toward low-
speed, low-shear regions (dark gray contours), where @u0=@zjw at-
tains a local minimum – i.e. the low-speed streaks. In these regions,
particles line up and form persistent clusters flanking the
@v 0=@zjw ¼ 0 lines, which now mark the position of Long-Term
Accumulation ðLTAÞ regions.

3.3.2. Quantification of particle segregation
In the previous sections, we have discussed some statistical

tools that can provide a quantitative description of near-wall phe-



Fig. 6. Viscous sublayer ðzþ < 5Þ instantaneous joint correlations of non-vanishing components of the fluctuating velocity gradient tensor, conditionally sampled at the fluid
grid points (a) and at particle positions projected onto the wall (b–f). (b) Stl ¼ 0:2, (c) Stl ¼ 1, (d) Stl ¼ 5, (e) Stl ¼ 25, (f) Stl ¼ 125. Joint correlations demonstrate that particles
are mostly concentrated in the ejection-like environments. Percent figures indicate the number of particles in a region of positive/negative @u0=@zjw .
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nomena such as particle trapping/re-entrainment (Section 3.2) and
particle preferential distribution (Section 3.3.1). In the following,
we will present additional statistical tools that can be used to char-
acterize particle segregation and particle deposition. These tools
have been used also to characterize and optimize particle disper-
sion in jets (Campolo et al., 2008; Sbrizzai et al., 2009, 2004; Cam-
polo et al., 2005).

The relative tendency of particles to segregate in a turbulent
flow field can be quantified in terms of maximum deviation from
randomness, D (Fessler et al., 1994), also referred to as segregation
parameter, Rp (Février et al., 2005). The maximum deviation from
randomness is defined as:

D � r� rPoisson

l
; ð11Þ

where r is the standard deviation for the measured particle number
density distribution and rPoisson is the standard deviation for a Pois-
son distribution (i.e. a purely random distribution of the same aver-
age number of particles). The parameter l is the mean particle
number density. According to Eq. (11), D ¼ 0 corresponds to a ran-
dom distribution, D < 0 corresponds to a uniform distribution, and
D > 0 indicates segregation of particles. In this latter case, larger
values of D correspond to stronger segregation. The maximum devi-
ation from randomness was applied to homogeneous isotropic tur-
bulence (Février et al., 2005) and to the centerline of a turbulent
channel flow (Fessler et al., 1994), focusing on two-dimensional re-
gions of nearly homogeneous flow to observe particle response to
small scale turbulent motions. In our channel flow simulations,
the use of D was extended to the near-wall region, where inhomo-
geneities arise in the direction perpendicular to the wall. The parti-
cle number density distribution is thus computed on a three-
dimensional grid containing Ncell cells of volume Xcell covering the
entire computational domain. This grid is independent of the Eule-
rian grid used by the flow solvers, and the volume Xcell is varied by
changing the streamwise and the spanwise lengths of the cell
whereas the wall-normal length is maintained to a uniform size
to avoid an additional averaging scale in the wall-normal direction.
The value calculated for D depends on the cell size. Because of this
dependency, the segregation parameter can not provide an abso-
lute, clearcut quantification of particle segregation; rather it should
be used just to identify and compare different trends. Taking this
into account, the cell size dependency can be partially overcome
by computing the particle number density distribution for several
values of Xcell and keeping only the largest value of D (Sbrizzai
et al., 2009; Picciotto et al., 2005; Février et al., 2005). This choice
is justified by the following reason: the cell size for which D is max-
imum indicates the length scales of particles clustering.

Fig. 8 shows the maximum deviation from randomness, Dmax

(black circles), as a function of the particle Stokes number, Stl, in
the viscous sublayer ð0 < zþ < 5Þ. Values indicate that the maxi-
mum segregation is obtained for the Stl ¼ 25 particles, which also
exhibit the strongest tendency to sample preferentially the flow
field (see Fig. 5). This indicates that particle dynamics in the vis-
cous sublayer is controlled by flow structures with non-dimen-
sional timescale sþf ’ 25. Considering that sþf scales linearly with
wall distance and decreases progressively as the turbulence struc-
tures lie closer to the wall, we can infer that this value corresponds
to the circulation time of the turbulence structures in the buffer
layer ð5 < zþ < 30Þ.

It is helpful to complement the analysis on particle segregation
by providing a single quantitative measure rather than the two
numbers, D and the length scale for that value of D. Several possi-



Fig. 7. Instantaneous Stl ¼ 25 particle distribution in the viscous sublayer
ðtþ ¼ 6500; zþ < 5Þ. The computational window is 400 wall units long and 250
wall units wide in the ðx; yÞ-plane. The mean flow is directed top down.
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bilities to measure segregation have been identified (see, for in-
stance, Calzavarini et al., 2008). Here, we will compute the correla-
tion dimension, introduced by Grassberger and Procaccia (1983). In
its three-dimensional formulation, needed to study non-isotropic
flows, this parameter can be computed by choosing one base par-
ticle and counting the fraction, NpðrÞ, of particles within a distance
r from the base particle. The correlation dimension, m, is defined as
the slope of NpðrÞ as a function of r in a log–log plot. The probability
distribution of the distance between the neighboring particles and
the base particle is obtained repeating this count for all possible
values of r, thus removing any dependence on the length scale
used. In general, NpðrÞ will scale with rm: if particles are uniformly
distributed in the volume surrounding the base particle, NpðrÞ will
scale with r3 (namely with the volume of the sphere centered on
the base particle); if particles are uniformly distributed over a sur-
face, NpðrÞwill scale with r2 (namely with the area of the circle cen-
tered on the base particle), whereas if particles are concentrated
into a line, NpðrÞwill scale with linearly with r. Thus smaller values
of m indicate greater preferential concentration. To compute results
significant from a statistical perspective, the procedure can be re-
peated for different randomly chosen base particles and different
times, averaging the results. The correlation dimension calculated
for the particles in the base DNS at Rel

s is shown in Fig. 8 (open cir-
cles). The correlation dimension is always smaller than 2, indicat-
ing that, regardless of their size, particles never attain a uniform
spatial distribution. It is confirmed that, while nearly random dis-
tribution is observed for the smaller particles, preferential concen-
tration is maximum for particles with Stokes numbers around 25.
In particular, the minimum value m ’ 1:53 indicates that the pref-
erential accumulation of these particles mainly occurs in elongated
structures.

3.3.3. Influence of the Reynolds number on particle segregation
The results shown in Fig. 8 are relative to the case of turbulent

channel flow at moderate Reynolds number ðRel
sÞ. If higher values

of Res are to be considered, then Reynolds number effects on par-
ticle dispersion may become significant because the characteristic
length and time scales of the particle change with respect to those
of the fluid when the flow dynamics change: in particular, the
higher the Reynolds number the smaller the particle response time
for a given value of the Stokes number. This point can be further
elucidated considering Fig. 9, where the one-dimensional (stream-
wise) frequency spectrum, EðxÞ, computed for the DNS at Rel

s is
compared with the frequency spectrum computed for the DNS at
Reh

s at the zþ ¼ 25 location inside the buffer layer. Also shown (so-
lid vertical lines) are the estimated response frequencies, propor-
tional to 1=sp, for each particle size. It is apparent that, in the Reh

s
flow (i) the turbulent kinetic energy budget spreads over a wider
range of frequencies, representing smaller flow timescales with
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which the particles may interact, and (ii) a given value of frequency
corresponds to higher values of the turbulent kinetic energy. In
principle, these observations should lead to the conclusion that
simulation techniques like LES, requiring models for the filtered
subgrid fluid scales, must incorporate a dependency on the flow
Reynolds number to recover the correct amount of SGS turbulent
kinetic energy. In fact, the need to include Reynolds number effects
should be carefully assessed being based on the knowledge of how
particle preferential concentration scales with this parameter.
Numerical investigations of the scaling properties of particle pref-
erential concentration with the Reynolds number were performed
in a synthetic turbulent advecting field by Olla (2002) and in
Homogeneous Isotropic Turbulence (HIT) by Collins and Keswani
(2004) and by Yeung et al. (2006).

Here, we investigate on the same effect in turbulent channel
flow.

To introduce our scaling argument, we remark that the same
(dimensional) value of the particle response time corresponds to
different values of the Stokes number according to the following
expression:

sh
p ¼ sl

p ! Sth � sh
f ¼ Stl � sl

f !
Sth

Stl
¼

sl
f

sh
f

¼ uh
s

ul
s

� �2

¼ Reh
s

Rel
s

 !2

; ð12Þ

where Sth and Stl represent the particle Stokes number in the Reh
s

simulation and in the Rel
s simulation, respectively; and

ðReh
s=Rel

sÞ
2 ¼ 4 in our case. If the shear velocity is the proper scaling

parameter then the coupling between particles and fluid in the re-
gime where particles preferentially concentrate is expected to obey
to Eq. (12). In Fig. 10 particle segregation in the center of the chan-
nel (Fig. 10(a)) and in the near-wall region (Fig. 10(b)) is quantified
by the Dmax parameter for the two DNS simulations. Black symbols
represent the values of Dmax for the particles in the DNS fields at Rel

s,
whereas open symbols are used for the particles in the DNS fields at
Reh

s . Two observations can be made: first, lower segregation occurs
at higher Reynolds number for a given value of the particle Stokes
number; second, the degree of segregation is indeed nearly the
same for particle Stokes numbers and shear Reynolds numbers
matching the condition given in Eq. (12), as indicated by the arrows.
This is particularly true in the near-wall region. The above results
seem to indicate that particle preferential concentration scales pro-
portionally to the flow Reynolds number and that it is possible to
parameterize Reynolds number effects simply by imposing a qua-
dratic dependence of the particle Stokes number on the shear Rey-
nolds number. These scaling effects appear to be consistent with
other observations, most of which refer to the Kolmogorov scaling
argument (Collins and Keswani, 2004; Yeung et al., 2006), that pre-
dict statistical saturation only at Reynolds numbers higher than
those considered here.

3.3.4. Quantification of particle deposition rates
According to our schematism of the deposition process, the de-

gree of particle segregation influences quantitatively the rate at
which particles deposit (i.e. their deposition flux). This was ex-
plained in the previous sections considering the chain of physical
mechanisms by which particles are transferred to and away from
the wall. It is thus consequential to combine the quantitative
description of particle segregation to the quantitative prediction of
particle deposition rate. Virtually all the experimental data on the
deposition rate were obtained in turbulent pipe flow. However, be-
cause deposition is mainly controlled by the near-wall turbulence,
which is a local wall-dominated phenomenon not influenced by
the largest scales of the flow, calculations for channel flow are the
simplest setting for model validation. The deposition rate of non-
interacting particles is proportional to the ratio between the particle
mass transfer rate on the wall (flux of particles per unit deposition
area), J, and the mean bulk concentration of particles (mass of parti-
cles per unit volume), C. According to this definition the constant of
proportionality, named deposition coefficient kd � �J=C, represents
a deposition velocity (Young and Leeming, 1997). Fig. 11 shows the
non-dimensional values of the deposition coefficient, kþd , computed
as function of the Stokes number in the Rel

s simulation (Picciotto
et al., 2005). The trend is similar to that seen in Fig. 8, which refers
to the same simulation time span: Again, the Stl ¼ 25 particles exhi-
bit the highest deposition rate. From our previous discussion, it is
now easy to argue that this happens because these particles are
the most responsive to near-wall turbulence in terms of segregation
and preferential distribution. Particles with smaller or larger inertia
are not able to respond in this optimal way, either because they be-
have more like tracers with strong stability against non-homoge-
neous distribution and near-wall concentration (the Stl ¼ 0:2
particles, in particular), or because they are too big to respond opti-
mally to the fine turbulence structures in the buffer layer (the
Stl ¼ 125 particles, for instance). In general terms, the degree of par-
ticle responsiveness to segregation and preferential distribution in-
duced by the flow structures is strongly (and directly) correlated to
the rate at which particles deposit.
4. Modelling perspectives for Large-Eddy Simulation of
turbulent dispersed flows

In this section, we will try to answer the issue of the minimal
physics required to model particle motion at the subgrid level. This
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level is not solved by LES, preventing tracked particles from being
exposed to flow scales which may influence their motion. Specifi-
cally, we will try to answer in a quantitative way to the following
questions: How does the SGS turbulence affect particle dispersion?
How should one model these SGS effects to predict accurately the
selective response of different-inertia particles? Having in mind
the phenomenological model illustrated in Section 3, we address
these issues by analyzing first the effect of the subgrid fluid turbu-
lence on particle segregation. Fig. 12 compares the DNS results for
Dmax against those obtained from real a-posteriori LES (Marchioli
et al., 2008a). Here, we have adapted to our channel flow at Rel

s
the computational procedure used by Fede and Simonin (2006)
for the case of heavy colliding particles in HIT. LES fields were com-
puted as discussed in Section 2. Particle tracking was performed
with no extra model. In this way, the scales not resolved by LES
are simply non-existing for the particle dynamics and it is possible
to judge if some of the filtered scales effects should be included as
suggested previously (Fede and Simonin, 2006; Kuerten, 2006). Re-
sults shown in Fig. 12 indicate that particle segregation is signifi-
cantly influenced by the subgrid fluid turbulence, even when the
particle response time is much larger than the flow timescales
not resolved in LES. Both in DNS and in LES, the behavior of the seg-
regation parameter is qualitatively similar: a peak of Dmax occurs
around Stl ¼ 25 and preferential concentration falls off on either
side of this optimum value. However, due to filtering, segregation
is always underestimated by LES, except for the Stl ¼ 125 particles.
For these particles filtering leads to an increase of segregation, in
agreement with the behavior observed by Fede and Simonin
(2006). As expected, the quantitative inaccuracy of LES is particu-
larly evident in the near-wall region (Fig. 12(b)), where the degree
of misprediction depends strongly on the ratio of the particle size
to the filtered spatial scales.

The limits of LES in providing an accurate quantitative estimate
of local particle segregation have an effect on particle deposition
fluxes and, in turn, on particle near-wall accumulation. This can
be observed in Fig. 13, where different instantaneous particle con-
centration profiles (taken at time tþ ¼ 1350 of the simulations at
Rel

s) are compared. Concentration is computed as particle number
density distribution, C, normalized by its initial value, C0 (see
Marchioli et al. (2008a) for details). Only the intermediate-size par-
ticles are considered. For these particles, LES underpredicts both
qualitatively and quantitatively particle accumulation at the wall.
Compared to the DNS results, different-shape profiles and lower
peaks of particle concentration inside the viscous sublayer are
found. Note that the degree of underprediction also depends on
the spatial resolution of the Eulerian grid. These findings are in line
with previous LES applications to particle dispersion in turbulent
wall-bounded flows (Kuerten and Vreman, 2005; Kuerten, 2006).
In our opinion, Figs. 12 and 13 are important since they demon-
strate that the inaccuracy of LES in predicting near-wall accumula-
tion is a direct consequence of filtering, which removes both
energy and flow structures from the LES turbulent flow field. LES
may thus produce an inaccurate rendering of the near-wall vorti-
ces responsible for trapping particles in the viscous sublayer (Kuer-
ten and Vreman, 2005). When these structures are smeared out of
the flow field, their interactions with particles can not be fully cap-
tured and representation of local segregation phenomena becomes
inadequate, in turn influencing macroscale collective phenomena
as deposition and overall particle distribution (Marchioli et al.,
2008a).

In the light of the above considerations, challenges for multi-
phase LES are in the specific modalities by which the SGS effects
are recovered and incorporated into models. In recent years, sev-
eral numerical studies have tried to clarify these modalities. Some
authors (Kuerten and Vreman, 2005; Shotorban and Mashayek,
2005; Kuerten, 2006; Shotorban et al., 2007; Marchioli et al.,
2008b) proposed a closure model for the equations of particle mo-
tion, which uses the approximate deconvolution method (Stolz
et al., 2001) to reconstruct the filtered fluid velocity and add its ef-
fects in the particle equations. This model was assessed in different
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flow configurations (from homogeneous turbulent isotropic and
shear flows to channel flow) and a general improvement in the pre-
diction of particle-related statistics was observed. Obviously,
deconvolution can be used to model the effect of the resolved
scales only and subgrid scales, virtually non-existing in the LES
context, can not be retrieved. These scales, however, do influence
the instantaneous particle behavior (Kuerten, 2006). Hence, even
when ad hoc closures are used in the particle equations, there
might be situations in which prediction of local particle segrega-
tion and, in turn, of near-wall accumulation are judged inaccurate
from a quantitative viewpoint because a quantitative replica of the
subgrid turbulent flow scales is not ensured (Marchioli et al.,
2008a). In our view, a model for subgrid particle dynamics may
not be obtained by the information provided via a LES computa-
tion, rather it must be obtained via an independent physical rea-
soning. A modelling strategy that goes along this direction was
developed recently by Minier and co-workers (Guingo and Minier,
2008; Chibbaro and Minier, 2008), who propose a Lagrangian mod-
el for particle deposition based on a stochastic description of the
effects due to near-wall coherent structures. The idea behind this
model is to account explicitly for the interactions of particles with
the coherent sweep/ejection events by including the relevant geo-
metrical features of the near-wall region. From an engineering
viewpoint, this seems to be a very interesting and promising at-
tempt to supply the particle equations with an adequate rendering
of the flow field by capturing the relevant physics involved in the
particle deposition process.

5. Conclusions

In this paper, we have reviewed the physical mechanisms
responsible for deposition and entrainment of inertial particles in
turbulent dispersed flow and have provided modelling perspec-
tives for the numerical simulation of such processes. Interpretative
models for the deposition and entrainment mechanisms were pro-
posed and discussed on the basis of direct numerical simulations of
turbulence and Lagrangian tracking of inertial particles. Simula-
tions were performed adopting the pointwise particle approach
and assuming that the interaction between the particle and the
surrounding fluid is represented through a force located at the po-
sition of the particle center. This keeps the level of modelling to a
minimum, provided that the inter-particle distance is large and
particles are small compared with the smallest relevant flow
scales. Even if the point-particle approach introduces some limita-
tions to the modelling capabilities of the numerical methodology,
and even if particle modelling is the simplest possible, simulations
provide a fully representative three-dimensional and time-depen-
dent description of the phenomena under investigation in the limit
of small particles and dilute flow conditions.

Through the systematic application of this numerical methodol-
ogy to a well-known archetypal instance of wall-bounded flow
(particle-laden channel flow), we have provided a detailed view
of the particle transfer mechanisms in turbulent boundary layer.
From this perspective, the role of the near-wall coherent structures
on each space and time scale involved, as well as the dispersion of
particles characterized by different values of the inertia parameter
has been considered carefully. In particular, we have pinpointed
that particle deposition to a wall is quintessentially linked to par-
ticle accumulation into specific regions in the buffer layer. These
findings are of particular importance for the improvement of exist-
ing deposition models and for the implementation of simulation
techniques of broader engineering significance, such as LES. Results
indicate that, since LES prediction of local segregation is inaccurate,
also inevitably inaccurate will be the macroscale prediction of par-
ticle deposition and overall distribution. Thus, current capabilities
of LES in Eulerian–Lagrangian studies of dispersed flows are
strongly limited by the modelling of the subgrid scale turbulence
effects on particle dynamics. These effects should be taken into ac-
count in order to reproduce accurately the physics of particle dis-
persion since the LES cut-off filter removes not only energy but,
most important, flow structures from the turbulent flow field. This
observation leads to the conclusion that recovering the subgrid en-
ergy by reconstruction of the correct amount of fluid and particle
velocity fluctuations is not enough to reproduce the effect of SGS
turbulence on particle near-wall accumulation.
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